您的浏览器禁用了JavaScript(一种计算机语言,用以实现您与网页的交互),请解除该禁用,或者联系我们。[国泰君安证券]:国君海外科技|AI ASIC芯片,选择、空间与趋势 - 发现报告

国君海外科技|AI ASIC芯片,选择、空间与趋势

AI智能总结
查看更多
国君海外科技|AI ASIC芯片,选择、空间与趋势

摘要: 投资建议:ASIC针对特定场景设计,有配套的软硬件全栈生态,虽然目前单颗ASIC算力相比最先进的GPU仍有差距,但整个ASIC集群的算力利用效率可能更高,同时还具备明显的价格、功耗优势,随着软件生态逐步成熟,ASIC有望更广泛地应用于AI推理与训练。我们看好ASIC的大规模应用带来云厂商ROI提升。 AIASIC芯片具备功耗、成本优势,是必然选择。目前AI算法向Transformer收敛,深度学习框架以PyTorch为主,为AIASIC发展提供了重要前提。目前AIASIC单卡算力低于可比的GPU芯片,但由于其成本较低,在推理常用精度下,展现出了更高的性价比(TFLOPS/$),功耗也更低,此外,由于ASIC专为特定任务设计,其算力利用率可能更高,谷歌TPU算力利用率可超过50%。对于云厂商来说,ASIC还是增加供应链多元性的重要选择。 AIASIC芯片成长空间广阔,未来有望增速超过通用加速计算芯片。Marvell预测,2023年,数据中心定制加速计算芯片规模约66亿美元,在AI加速计算芯片市场占有率较低,为16%。Marvell预计2028年定制芯片规模有望超400亿美元,CAGR达45%,而通用加速计算芯片2028年预计达到1716亿美元市场规模,CAGR为32%。AMDCEO苏姿丰预测2027年AI加速器将增加到4000亿美元的规模。 参考CPU发展历程,随着AIASIC的使用门槛和兼容性改善,渗透率长期有望提升。目前,除了ROCm、OneAPI等开源软件生态以外,云厂商也在积极构建集成了PyTorch等主流深度学习框架的软件生态,开发一系列编译器、底层中间件等,兼容性持续增强。目前,AIASIC主要服务云厂商自有业务,以及有一定编译能力的中大型企业(比如苹果)。我们认为随着云厂商自研芯片的用户使用门槛降低,结合其功耗成本上的巨大优势,在AI加速计算领域的渗透率长期有望提升。 风险提示:AI算法技术风险、生态系统建设不及预期、芯片研发不及预期、AI产业发展不及预期。 文章来源 本文摘自:2024年8月22日发布的《AIASIC芯片,选择、空间与趋势》秦和平,资格证书编号;S0880523110003 更多国君研究和服务 亦可联系对口销售获取 重要提醒 本订阅号所载内容仅面向国泰君安证券研究服务签约客户。因本资料暂时无法设置访问限制,根据《证券期货投资者适当性管理办法》的要求,若您并非国泰君安证券研究服务签约客户,为保证服务质量、控制投资风险,还请取消关注,请勿订阅、接收或使用本订阅号中的任何信息。我们对由此给您造成的不便表示诚挚歉意,非常感谢您的理解与配合!如有任何疑问,敬请按照文末联系方式与我们联系。 法律声明