您的浏览器禁用了JavaScript(一种计算机语言,用以实现您与网页的交互),请解除该禁用,或者联系我们。[国泰君安证券]:国君海外科技|算力需求高增,AI ASIC突围在即 - 发现报告

国君海外科技|算力需求高增,AI ASIC突围在即

AI智能总结
查看更多
国君海外科技|算力需求高增,AI ASIC突围在即

摘要: 投资建议:ASIC针对特定场景设计,有配套的通信互联和软件生态,虽然目前单颗ASIC算力相比最先进的GPU仍有差距,但整个ASIC集群的算力利用效率可能会优于可比的GPU,同时还具备明显的价格、功耗优势,有望更广泛地应用于AI推理与训练。我们看好ASIC的大规模应用带来云厂商ROI提升,同时也建议关注定制芯片产业链相关标的。 AIASIC具备功耗、成本优势,目前仍处于发展初期,市场规模有望高速增长。目前ASIC在AI加速计算芯片市场占有率较低,预计增速快于通用加速芯片。据 Marvell预测,2023年,定制芯片仅占数据中心加速计算芯片的16%,其规模约66亿美元,预计2028年数据中心定制加速计算芯片规模有望超400亿美元。 ASIC单卡算力与GPU仍有差距,但单卡性价比和集群算力效率优秀。ASIC中算力相对较高的谷歌TPUv6和微软Maia100算力约为H100非稀疏算力的90%、80%,同时ASIC的单价显著低于GPU,故而在推理场景呈现更高的性价比;ASIC的芯片互联以PCIe协议为主,处于追赶状态,NVLink协议更具优势;在服务器互联方面,ASIC主要采用以太网,正追平英伟达的IB网络,目前H100集群可以做到10万卡规模,ASIC中谷歌TPU相对更为领先,TPUv5p单个Pod可达8960颗芯片,借助软件能力,TPUv5e可拓展至5万卡集群,且保持线性加速。由于ASIC专为特定场景设计,且云厂商对软件生态掌握程度也较高,ASIC集群的算力利用率实际可能高于GPU(如TPU、MTIA等)。 软件生态也是影响AI计算能力的重要因素,当前CUDA生态占据主导,ASIC软件生态有望逐步完善。云厂商普遍具备较强的研发能力,均为AIASIC研发了配套的全栈软件生态,开发了一系列的编译器、底层中间件等,提升ASIC在特定场景下的计算效率。此外,一些商用芯片厂商也推出了开源平台,如ROCm和oneAPI,未来ASIC的软件生态将会愈发成熟、开放。 风险提示:AI算法技术风险、生态系统建设不及预期、芯片研发不及预期、AI产业发展不及预期。 文章来源 本文摘自:2024年8月15日发布的《算力需求高增,AIASIC突围在即》秦和平,资格证书编号;S0880523110003 更多国君研究和服务 亦可联系对口销售获取 重要提醒 本订阅号所载内容仅面向国泰君安证券研究服务签约客户。因本资料暂时无法设置访问限制,根据《证券期货投资者适当性管理办法》的要求,若您并非国泰君安证券研究服务签约客户,为保证服务质量、控制投资风险,还请取消关注,请勿订阅、接收或使用本订阅号中的任何信息。我们对由此给您造成的不便表示诚挚歉意,非常感谢您的理解与配合!如有任何疑问,敬请按照文末联系方式与我们联系。 法律声明