您的浏览器禁用了JavaScript(一种计算机语言,用以实现您与网页的交互),请解除该禁用,或者联系我们。[中国石油勘探开发研究院&提高油气采收率全国重点实验室&中石油深圳新能源研究院 有限公司&浙江大学&中国地质大学]:碳中和目标下 CO2 捕集利用与封存技术进展、挑战与展望 - 发现报告

碳中和目标下 CO2 捕集利用与封存技术进展、挑战与展望

AI智能总结
查看更多
碳中和目标下 CO2 捕集利用与封存技术进展、挑战与展望

邹才能1, 2, 3,张辰君1, 2, 4,程军4,吕伟峰1, 2,金旭1, 2,高明1, 2,吴松涛1,俞宏伟1, 2,余晖迪1,杨智1,桑国强1, 2,张澜琼1,刘翰林1,王珂5 (1.中国石油勘探开发研究院,北京100083;2.提高油气采收率全国重点实验室,北京100083;3.中石油深圳新能源研究院有限公司,广东深圳518063;4.浙江大学,杭州310058;5.中国地质大学(北京),北京100083) 基金项目:国家社会科学基金重大项目“统筹新能源发展与国家能源安全重要关系及实践路径研究”(24&ZD106);新型油气勘探开发国家科技重大专项“新型地下储气库高效建设关键技术”(2025ZD1406807);中国石油天然气集团有限公司软科学研究课题“CCS/CCUS集群化发展策略研究”(中油研20250110-4);新疆维吾尔族自治区重大科技专项“新疆地区CCUS产业发展关键技术与工程示范” 摘要:聚焦CO2捕集利用与封存技术(CCUS)研究进展与发展趋势,研判北美、欧洲、中东和中国CCUS相关政策导向、技术现状和重点项目。阐明碳捕集、碳利用和碳封存的技术内涵,从技术性、经济性、安全性、系统性等多个角度提出了目前存在的问题及挑战:CO2捕集技术相对成熟,直接捕集法等新工艺和金属有机框架材料等新材料的出现为高效捕集提供了更多选择,但高能耗、高成本的问题仍有待解决;CO2地质利用实践起步较早,匹配气源、增强混相能力、扩大波及体积是技术突破重点;CO2化学利用市场前景广阔,可实现高附加值产品转化,研发高转化效率、低成本的催化体系是核心问题;CO2封存地质体类型多样,全球陆上及海洋理论封存容量巨大,但需通过碳市场调控和补贴性政策弥补封存技术本身经济效益的欠缺。指出加强关注低浓度CO2捕集、CO2强化采油、CO2绿色燃料合成、CO2微生物转化、CO2矿化产氢协同、地下储气库CO2垫气置换等前沿重点技术,通过低成本技术创新、局域化管网建设、灵活技术组合、宏观政策调控与跨领域创新协同,支撑CCUS从百万吨级、千万吨级到亿吨级规模的跨越式发展,助力中国碳中和目标实现。 关键词:CCUS;二氧化碳;碳中和;碳捕集;碳利用;碳封存;技术进展 中图分类号:TE348文献标识码:A Advances, challenges, and prospects of carbon dioxide capture, utilization,and storage technologies for carbon neutrality ZOU Caineng1, 2, 3, ZHANG Chenjun1, 2, 4, CHENG Jun4, LYU Weifeng1, 2, JIN Xu1, 2, GAO Ming1, 2, WU Songtao1,YU Hongwei1, 2, YU Huidi1, YANG Zhi1, SANG Guoqiang1, 2, ZHANG Lanqiong1, LIU Hanlin1, WANG Ke5 (1.PetroChina Research Institute of Petroleum Exploration & Development,Beijing100083,China; 2.State Key Laboratory ofEnhanced Oil and Gas Recovery,Beijing100083,China; 3.PetroChina Shenzhen New Energy Research Institute Co.,Ltd.,Shenzhen518063,China; 4.Zhejiang University,Hangzhou310058,China; 5.China University of Geosciences(Beijing),Beijing100083,China) Abstract:This study reviews the recent progress and trends of carbon capture, utilization and storage (CCUS) technologies, with aparticular focus on related policy orientations, technological status, and representative projects across North America, Europe, the MiddleEast, and China. The technical connotations of CCUS are elucidated, and the existing issues and challenges are identified from theperspectives of technology, economics, safety and system integration. The CO2capture technologies are relatively mature; the emergenceof novel processes such as direct air capture (DAC) and advanced materials such as metal-organic frameworks (MOFs) offer new choicesfor efficient capture, but issues related to high energy consumption and operational costs remain unresolved. The CO2geologicalutilization has developed earlier, where breakthroughs rely on effective source matching, enhanced miscibility and increased sweptvolume. The CO2chemical utilization exhibits broad market potential for producing high value-added products, and the development ofcatalytic systems with high conversion efficiency and low cost is identified as the core challenge. For CO2storage, diverse geologicalbodies provide vast theoretical capacities on both land and offshore worldwide, but subsidy policies and carbon market regulation arerequired to offset the limited economic returns of storage technologies. This study highlights several frontier technologies, includinglow-concentration CO2capture, CO2-enhanced oil recovery (EOR), CO2-based green fuel synthesis, microbial CO2conversion, CO2mineralization and hydrogen production, and CO2cushion gas replacement in underground gas storage (UGS). Through cost-effectiveinnovation,regional pipeline network development,flexible technology integration,coordinated macro-policy regulation,andcross-disciplinary collaboration, CCUS can achieve a transformative scale-up from million-ton and ten-million-ton capacities to thehundred-million-ton level, contributing to the achievement of the carbon neutrality goals of China. Key words:CCUS; carbon dioxide; carbon neutrality; carbon capture; carbon utilization; carbon storage; technological advances 引用:,,,.CO2[J].,2025, 52(6): 1472-1487.ZOU Caineng, ZHANG Chenjun, CHENG Jun, et al. Advances, challenges, and prospects of carbon dioxide capture, utilization,and storage technologies for carbon neutrality[J]. Petroleum Exploration and Development, 2025, 52(6): 1472-1487. CO2[5-7]CCUSCCSCCUCDRCCSCO2CO2CCUCO2CDRCO2CO2IEA2050CCUS14%CO221CCUS32%[8]CCUSCCUS 0 CO2202418501.5℃[1][2] 80%20242%0.3%3.7%378×108t[3-4]1.5℃CO2 1CCUS 1.1北美地区 CCUSCCUSCO2CO2-EOR1972CO2SACROC1 CO2CCUSCO2 CO25 000 tCO21.75×108t4 300×104t[9-10]CO2CO22050DOE3 000~5 000×104t CO2 2030CO25 000×104tCCUSSleipner1996CO2100×104t CO22 000×104t[16]2004K12-BCO2[17]CO2Northern LightCO2100 kmCO22 600 mCO2150×104t2025500×104t[18]CarbFixCO2[19] CO21 000×108tCO2[11]QuestCO22024900×104t[12]DecaturCO2100×104tCCUS CO2SteelanolCO28 000×104L12.5×104t[20]MefCO2CO2400 t2019[21] CCUSCO2[13]Boundary Dam PowerCO22014CO2700×104t[14]2017Petra Nova160×104t CO2CO2-EOR[15]PSC90%DAC[15] 1.3中东地区 CCUSCO2CO2 CCUS2016Al ReyadahCCUSCO280×104tRumaithaBab[22]ADNOCHabshan2023CO2150×104t CO2CCUS[15]GhawarCO2CO280×104t CO2[23] 1.2欧洲地区 CCUSCCUS100~200/tEU ETS2024CCUS CO2 CCUSCO2300×104t CO21/2+CCUS[28] Ras L