AI智能总结
《矿产保护与利用》网络首发论文 煤炭地下气化与碳捕集利用技术的集成:实现碳中和的清洁能源路径薛俊杰,东振,卢海兵,陈艳鹏,陈浩,张梦媛,赵宇峰10.13779/j.cnki.issn1001-0076.2025.10.0102025-10-13薛俊杰,东振,卢海兵,陈艳鹏,陈浩,张梦媛,赵宇峰.煤炭地下气化与碳捕集利用技术的集成:实现碳中和的清洁能源路径[J/OL].矿产保护与利用.https://doi.org/10.13779/j.cnki.issn1001-0076.2025.10.010 题目:作者:DOI:网络首发日期:引用格式: 网络首发:在编辑部工作流程中,稿件从录用到出版要经历录用定稿、排版定稿、整期汇编定稿等阶段。录用定稿指内容已经确定,且通过同行评议、主编终审同意刊用的稿件。排版定稿指录用定稿按照期刊特定版式(包括网络呈现版式)排版后的稿件,可暂不确定出版年、卷、期和页码。整期汇编定稿指出版年、卷、期、页码均已确定的印刷或数字出版的整期汇编稿件。录用定稿网络首发稿件内容必须符合《出版管理条例》和《期刊出版管理规定》的有关规定;学术研究成果具有创新性、科学性和先进性,符合编辑部对刊文的录用要求,不存在学术不端行为及其他侵权行为;稿件内容应基本符合国家有关书刊编辑、出版的技术标准,正确使用和统一规范语言文字、符号、数字、外文字母、法定计量单位及地图标注等。为确保录用定稿网络首发的严肃性,录用定稿一经发布,不得修改论文题目、作者、机构名称和学术内容,只可基于编辑规范进行少量文字的修改。 出版确认:纸质期刊编辑部通过与《中国学术期刊(光盘版)》电子杂志社有限公司签约,在《中国学术期刊(网络版)》出版传播平台上创办与纸质期刊内容一致的网络版,以单篇或整期出版形式,在印刷出版之前刊发论文的录用定稿、排版定稿、整期汇编定稿。因为《中国学术期刊(网络版)》是国家新闻出版广电总局批准的网络连续型出版物(ISSN 2096-4188,CN 11-6037/Z),所以签约期刊的网络版上网络首发论文视为正式出版。 煤炭地下气化与碳捕集利用技术的集成:实现碳中和的清洁能源路径 薛俊杰1,2,3,东振1,2,3*,卢海兵1,2,3,陈艳鹏1,2,3,陈浩1,2,3,张梦媛1,2,3,赵宇峰1,2,3 1.中国石油天然气股份有限公司勘探开发研究院非常规研究所,北京100083; 2.中国石油集团煤岩气重点实验室,河北廊坊065007; 3.国家能源页岩气研发(实验)中心,河北廊坊065007 摘要:“碳中和”与“碳达峰”目标推动我国能源结构向可再生能源转型,煤炭作为主体能源需兼顾清洁利用与能源保障。我国超半数中深层煤炭资源不具备矿井开采条件,煤炭地下气化技术(Underground Coal Gasification,UCG)成为开发关键。为解决UCG产物中H2储运成本高及CO2处理难题,研究设计了三段式煤炭地下气化(Three-stage Underground Coal Gasification,UCG-Ⅲ)与近井端CO2加氢制甲醇的耦合技术方案。UCG-Ⅲ是新一代煤炭清洁转化技术,其核心是将CO₂既作为产物又作为气化剂,通过三个阶段的工艺设计实现煤炭的高效利用与CO₂的内部循环。该技术旨在解决当前UCG产业化面临的H2储运成本高、CO₂排放未闭环问题——通过优化气化反应路径,生成富氢合成气直接用于井口CO2催化转化,同步实现氢能就地消纳与碳资源高值利用。该技术大幅缩减储运成本并降低CO2排放,验证了煤炭“能源服务”与“碳基材料供应”的双重价值,有望实现“环保优先、经济可行”的煤炭清洁化利用目标。当前技术仍面临三段式气化过程可控性、低成本撬装甲醇转化装备研发等挑战,未来需通过多物理场模型耦合优化过程控制,研发高效催化剂并完善系统集成,以推动工业化应用。 关键词:煤炭地下气化;氢气储运;CO2加氢制甲醇;碳基材料 DOI:10.13779/j.cnki.issn1001-0076.2025.10.010 Integration of Underground Coal Gasification and Carbon Capture, Utilization, andStorage: A Clean Energy Pathway to Carbon NeutralityXUE Junjie1,2,3,DONG Zhen1,2,3*,LU Haibing1,2,3,CHEN Yanpeng1,2,3,CHEN Hao1,2,3,ZHANG Mengyuan1,2,3,ZHAO Yufeng1,2,3(1.Research Institution of Petroleum Exploration and Development, Unconventional Research Institute,Beijing100083, China; (2.KeyLaboratoryofCoal—rockGas,CNPC,Langfang065007,Hebei,China;(3.NationalEnergyShaleGasR&D(Experiment)Center,Langfang065007,Hebei, China) Abstract:The "carbon neutrality" and "carbon peaking" objectives are propelling China's urgentenergy structure transition toward renewable energy sources. As the dominant primaryenergy, coalmust strike a balance between clean utilization and energy security. Notably, over half of China'smedium-deep coal resources are unsuitable for conventional mine mining, making underground coalgasification (UCG) a pivotal technology for their development. This study addressed the criticalchallenges in UCG industrialization, namely the high storage and transportation costs of H2and theunclosed-looptreatmentofCO2 emissions.Anovel couplingtechnicalscheme wasproposed,integrating three-stage underground coal gasification(UCG-Ⅲ)with near-well CO2hydrogenation to produce methanol. UCG-Ⅲis a new generation of clean coal conversion technology,whose core lies in using CO2as both a product and a gasification agent, and achieving efficientutilization of coal and internal circulation of CO2through a three-stage process design.The gasificationreaction pathway was optimized by this innovative approach to generate hydrogen-rich syngas, whichis directly utilized for wellhead CO2catalytic conversion. Through this, simultaneous on-site hydrogenenergy consumption and high-value utilization of carbon resources were achieved. Experimental andeconomic analyses demonstrated that storage and transportation costs were significantly reduced by47% compared to traditional methods, and CO2emissions were lowered by up to 80% throughunderground CO2recycling. The dual value of coal as both an "energy service provider" and a"carbon-based material supplier" was validated in this study, paving the way for environmentallyfriendly and economically feasible clean coal utilization. Current challenges include enhancing thecontrollability of the three-stage gasification process and developing low-cost skid-mounted methanolconversion equipment. Future research will focus on optimizing process control via multi-physics fieldmodel coupling,developing efficient catalysts,and improving system integration to facilitatelarge-scale industrial application.This work provides a critical technological pathwayfor China's fossilenergy transition toward carbon neutrality. Key words:Underground coal gasification; H2storage and transportation;CO2hydrogenation tomethanol; carbon-based material 引言 2020年全球CO2排放量为322亿t,中国CO2排放量99.67亿t,以31%的比例居全球首位[1],其中煤炭行业CO2排放占我国化石能源排放的74.5%,是我国一次能源体系中碳排放主要来源[2]。在“双碳”目标要求下,深部煤炭资源的绿色开发及其清洁利用是化石能源向新能源平稳过渡的关键技术节点,将对我国建设成为世界科技强国具有重要的意义[3]。 能源系统具有两项重要的职能:一是为人类活动提供所需要的能源服务,包括电力、热力和交通移动力;二是能源化工,提供人类生活与生产活动所需的原材料,涵盖生活必需品、医疗器械中基于碳骨架的关键材料,以及各类有机化工产品、合成材料、生物医用耗材、精细化学品等碳基化合物。“碳”是自然界最普遍的元素之一,也是地球上能否形成生命的最核心要素。造成全球温室效应与环境恶化的主要问题源于化石能源大量燃烧所释放的过量CO2,而非所有的CO2,更非“碳”本身。“煤炭”,一方面是化工行业的重要原材料,另一方面却贴着“高碳”的