您的浏览器禁用了JavaScript(一种计算机语言,用以实现您与网页的交互),请解除该禁用,或者联系我们。[开源证券]:因子切割论与深度学习的结合应用——市场微观结构研究系列(28) - 发现报告

因子切割论与深度学习的结合应用——市场微观结构研究系列(28)

2025-07-26魏建榕、苏俊豪开源证券尊***
AI智能总结
查看更多
因子切割论与深度学习的结合应用——市场微观结构研究系列(28)

2025年07月26日《A股反转之力的微观来源》-2019。12.23《振幅因子的隐藏结构》-2020.05.16《 主 动 买 卖 因 子 的 正 确 用 法 》-2020.09.05《因子切割论》-2020.09.16《 遗 传 算 法 赋 能 交 易 行 为 因 子 》-2023.08.06相关研究报告金融工程研究团队魏建榕(首席分析师)证书编号:S0790519120001张翔(分析师)证书编号:S0790520110001傅开波(分析师)证书编号:S0790520090003高鹏(分析师)证书编号:S0790520090002苏俊豪(分析师)证书编号:S0790522020001胡亮勇(分析师)证书编号:S0790522030001王志豪(分析师)证书编号:S0790522070003盛少成(分析师)证书编号:S0790121070009苏良(分析师)证书编号:S0790121070008何申昊(分析师)证书编号:S0790524070009蒋韬(分析师)证书编号:S0790525070001 1/16 目录1、因子切割论回顾:剖析市场精细结构的利器..........................................................................................................................32、DBD-GRU模型:因子切割论与深度学习的有机结合...........................................................................................................53、风险提示...................................................................................................................................................................................134、附录...........................................................................................................................................................................................14图表目录图1:信息在时间轴上的分布不均匀(示意图).........................................................................................................................3图2:M_high与M_low的累计IC差异显著................................................................................................................................4图3:因子切割论示意图................................................................................................................................................................6图4:DBD-GRU模型示意图.........................................................................................................................................................6图5:理想振幅因子与理想反转因子多空净值表现优异.............................................................................................................7图6:理想振幅与理想反转因子多空收益可达20%以上............................................................................................................7图7:GRU模型下切割论因子的多空表现均有较大提升...........................................................................................................8图8:GRU因子的分组收益单调性较好.......................................................................................................................................8图9:DBD-GRU模型下,因子多空表现进一步提升..................................................................................................................8图10:DBD-GRU模型因子的多空收益均在30%以上...............................................................................................................8图11:DBD-GRU模型因子与另外两类因子的相关性较高........................................................................................................9图12:DBD-GRU因子在剔除切割论因子与GRU因子后仍有较强的预测能力....................................................................10图13:沪深300中,DBD-Combine因子的RankIC均值为-5.76%..........................................................................................11图14:沪深300中,DBD-Combine因子十分组多空年化收益为14.9%.................................................................................11图15:DBD-Combine因子在沪深300中的增强组合年化超额为7.64%.................................................................................11图16:中证500中,DBD-Combine因子的RankIC均值为-7.40%..........................................................................................11图17:中证500中,DBD-Combine因子十分组多空年化收益为17.5%.................................................................................11图18:DBD-Combine因子在中证500中的增强组合年化超额为7.23%.................................................................................12图19:中证1000中,DBD-Combine因子的RankIC均值为-9.84%........................................................................................12图20:中证1000中,DBD-Combine因子十分组多空年化收益为30.8%...............................................................................12图21:DBD-Combine因子在中证1000中的增强组合年化超额为11.8%...............................................................................13表1:基于因子切割论的模型汇总................................................................................................................................................5表2:相减的操作提升了因子稳定性............................................................................................................................................5表3:DBD-GRU模型参数.............................................................................................................................................................6表4:改进因子列表........................................................................................................................................................................7表5:切割论因子整体表现优秀....................................................................................................................................................7表6:GRU因子表现大幅提升.......................................................................................................................................................8表7:DBD-GRU模型下,因子表现进一步提升..............