您的浏览器禁用了JavaScript(一种计算机语言,用以实现您与网页的交互),请解除该禁用,或者联系我们。[开源证券]:机械设备行业深度报告:钻石散热:高算力时代的终极方案,打开AI潜力的钥匙 - 发现报告

机械设备行业深度报告:钻石散热:高算力时代的终极方案,打开AI潜力的钥匙

机械设备2024-12-08孟鹏飞、罗悦开源证券胡***
AI智能总结
查看更多
机械设备行业深度报告:钻石散热:高算力时代的终极方案,打开AI潜力的钥匙

钻石:“终极”半导体材料,“六边形战士” 着半导体遵循着摩尔定律纳米制程进步、TDP(热设计功耗)上升,芯片热流密度变得越来越高,散热革命成为AI、HPC时代最大挑战。当芯片表面温度达到70-80℃时,温度每增加1℃,芯片可靠性就会下降10%;设备故障超过55%与过热直接相关。金刚石是已知热导率最高的材料,热导率达硅(Si)13倍、碳化硅(Sic)4倍,铜和银4-5倍,并具有超宽禁带半导体优异特质,被视为“第四代半导体”或“半导体终极材料”。与SiC相比,钻石芯片成本可便宜30%,所需材料面积仅为SiC芯片1/50,减少3倍能量损耗,并将芯片体积缩小4倍。 钻石散热:高算力时代“终极”方案,打开AI潜力的钥匙 钻石散热方案在高效能电子产品应用潜力广阔,未来每台电脑、汽车和手机都有望装上钻石。半导体领域,“钻石冷却”技术可让GPU、CPU计算能力提升3倍,温度降低60%,能耗降低40%,为数据中心节省数百万美元的冷却成本。 新能源汽车领域,超薄钻石纳米膜助力电动汽车充电速度提升5倍,热负荷降低10倍。基于钻石技术的逆变器体积小6倍,性能更卓越。太空卫星领域,数据速率提升5-10倍,尺寸减小50%,并在严酷的太空环境中表现更稳定。无人机领域,无人机仅需1分钟就能充满电,金刚石吸收产生高密度激光束,解决续航问题。基于独特物理特性,钻石还在量子计算、核处理等方面打开应用潜力。 产业化开启“从0到1”阶段,国内培育钻石产业链大放异彩 钻石散热产业链开启“从0到1”临界点,全球各项应用加速落地。美国Akash Systems公司获得美国芯片法案支持,体现了对钻石散热前景的充分认可;英伟达率先采用钻石散热GPU实验,性能是普通芯片的三倍;华为接连公布钻石散热专利,坚定入局,未来有望在高性能计算、5G通信、人工智能等领域广泛应用;国内公司化合积电已具备较为完整的金刚石半导体材料解决方案,并实现规模化生产(未上市,光莆股份有持股)。我们测算钻石散热市场规模有望由2025年0.5亿美元(渗透率不足0.1%)增长至152亿美元(渗透率约10%),复合增速214%,市场前景可观。我国人造钻石产业链具备绝对成本优势,人造金刚石产量占全球总产量的90%以上。国内培育钻石企业积极布局“钻石散热”技术,并在半导体衬底、热沉等方面取得突破。2024年8月,商务部、海关总署开始对人造金刚石设备和技术进行出口管制。 投资建议 我们认为,钻石散热作为下一代散热技术,在AI时代具备划时代意义和产业化潜力。我国具备完整的产业链,同时对上游材料进行出口限制,产业化正处于“从0到1”阶段,开发进度毫不逊于海外。在全球高算力时代,我国有望站在科技制高点。受益标的:力量钻石、沃尔德、国机精工、黄河旋风、四方达、中兵红箭、惠丰钻石、光莆股份。 风险提示:钻石散热产业化不及预期;供应链发展不及预期。 1、钻石:“终极”半导体材料,“六边形战士 1.1、散热革命成为AI、HPC时代的最大挑战 散热革命已成为AI、HPC时代的最大挑战。电流通过导体时会生成焦耳热,芯片在运行过程中不可避免地产生大量热量,若无法及时散发,芯片温度将急剧上升,进而影响其性能和可靠性。热流密度(热通量)指的是每单位面积传递的热量,随着半导体产业遵循着摩尔定律逐步迈向2纳米、1纳米甚至是埃米(Angstrom,1埃=十亿分之一米)级别迈进,尺寸不断缩小,功率不断增大,带来了前所未有的热管理挑战。同时,云计算、加密计算和人工智能等需求的增长,芯片的TDP(热设计功耗)持续上升,2023年已出现接近1000W的高功率芯片,未来的芯片热流密度可能达到1000W/cm²,热流密度越来越高,摩尔定律受到散热挑战。 图1:NVIDIA GPU架构演进:纳米制程进步、TDP持续上升 图2:四大芯片制造厂趋势:芯片尺寸微缩、集成度提升 芯片内部热量无法有效散发时,局部区域会形成“热点”,导致性能下降、硬件损坏及成本激增。(1)性能下降:据《C a b o n t e c h Ma g a z i n e》,当电子设备温度过高时,工作性能会大幅度衰减,当芯片表面温度达到70-80℃时,温度每增加1℃,芯片的可靠性就会下降10%。AI硬件的高功率需求下,过热限制了硬件性能的发挥,阻碍了芯片的理论性能实现。(2)设备失效:芯片温度每升高10℃,其运行寿命减半,超过55%的设备故障与过热直接相关。(3)成本激增:企业每年需投入数亿美元在散热系统上,包括大量消耗能源和资源的冷却系统(如液冷、风冷等),不仅增加了运营成本,也加剧了能源消耗;(4)安全隐患:极端情况下,温度过高可能引发火灾等严重事故,给设备和人员安全带来威胁。 图3:芯片功率图和相应芯片温度图上的热点(红色区域代表最高温度点) 图4:超过55%设备故障与过热直接相关 图5:70℃以上时芯片寿命会随温度的升高迅速下滑 英伟达Blackwell处理器面临的热挑战。2024年11月18日,《The Information》报道称,英伟达新一代Blackwell处理器在高容量服务器机架中存在严重的过热问题,导致设计调整和项目延期,引发了谷歌、Meta和微软等主要客户的担忧。Blackwell GPU专为人工智能(AI)和高性能计算(HPC)设计,配备72颗处理器的服务器中,过热限制了性能,并可能损坏硬件。每个机架的功耗高达120千瓦,给散热带来了巨大挑战,迫使英伟达多次重新评估服务器机架设计,以确保GPU性能和组件的稳定性。除了GPU和服务器机架的过热问题,英伟达还曾遇到HBM内存的过热问题。 三星的HBM3和HBM3E内存面临过热和功耗问题,未能通过英伟达的测试,过热问题直到几个月后才解决。 图6:NVIDIABlackwell架构GPU采用 4nm 工艺,拥有2080亿个晶体管 发展新一代散热材料,减少散热风险、解决全生命周期散热成本,成为未来关键突破点。现有的散热材料、导热界面材料(TIM)、热管和均热板等具有一定的导热性能,但其热导率仍难以满足高功率器件的需求。发展新散热材料迫在眉睫,让芯片运行效率更快而没有过热的风险,并减少全生命周期的散热成本,已成为解决高算力设备散热问题的关键。 图7:高功耗芯片TIM散热路径示意图 1.2、钻石:“终极”半导体材料,“六边形战士” 半导体材料发展演变之路:从“沙子”到“钻石”。自20世纪50年代以来,半导体行业经历了多个技术阶段,从第一代半导体材料硅(Si),逐步向第三代半导体金刚石(又称“第四代半导体”)、碳化硅(SiC)及氮化镓(GaN)等演化。 第一代半导体材料(1950s-至今):自1959年硅晶片问世以来,硅和锗(Ge)成为了半导体材料的主力,广泛应用于集成电路和电子器件中。尽管硅材料为半导体技术的发展做出了巨大贡献,但其物理特性(如较低的带隙)限制了其在高频和高功率领域的应用。 第二代半导体材料(20世纪末):随着技术需求的升级,第二代半导体材料开始出现,代表材料包括砷化镓(GaAs)和磷化铟(InP)。这些材料具备较高的电子迁移率和更宽的带隙,使得其在高频、高速和光电应用中具有优势。然而,GaAs和InP的高成本和毒性问题限制了它们的广泛应用。 第三代半导体材料(21世纪初至今):进入21世纪后,半导体行业的研究焦点逐渐转向了第三代宽禁带半导体材料,这些材料具有更宽的带隙、更高的热导率和更强的抗电压击穿能力,以金刚石、碳化硅(SiC)、氮化镓(GaN)等为主第三代半导体材料成为热点。 尽管部分分类中金刚石属于第三代半导体,但拥有比第三代半导体材料更卓越的特性,包括更宽的禁带宽度(5.5 eV)以及更卓越的电学和热学性能,因此又被视为“第四代半导体”、“超宽禁带半导体”或“终极半导体材料”。 表1:四代半导体材料发展演变之路 金刚石作为一种超宽禁带半导体,基于优异的导热性、载流子迁移率、击穿电场强度等关键特性,被视为半导体材料“六边形战士”及“终极半导体”。 1.导热性:金刚石的热导率是已知最高的材料之一,达到2000 W/m·K,是硅(Si)、碳化硅(Sic)和砷化镓(GaAs)的13倍、4倍和43倍,铜和银4-5倍。在热导率要求为10~200 W/(m·K)之间时,金刚石是唯一可选的热沉材料。作为芯片基板时,金刚石也能更有效地将热量从处理器中带走,让器件拥有更高的性能,并实现轻量化和小型化。 2.禁带宽度与击穿电场:金刚石的禁带宽度达到5.47 eV,其击穿电场强度为10^9 V/m ,是砷化镓的17倍、氮化镓的2倍、碳化硅的2.5倍。宽禁带特性使金刚石在高温、高压、高频等极端环境下具有优异的耐电强度,能够承受更高的电压,广泛应用于高压电力设备、射频器件等高性能领域。 3.载流子迁移率:金刚石具有极高的载流子迁移率,电子迁移率为4500 cm²/V·s,空穴迁移率为3800 cm²/V·s,显著优于硅、砷化镓和氮化镓等常见半导体材料。其强大的共价键和稳定的晶格结构,使电子在金刚石中能够以极高的速度运动,大幅降低电阻和损耗,提升高频电子器件的性能,适用于高频通信、雷达系统等需要高速信号处理的应用。 4.绝缘性:金刚石具有宽广的能带间隙,具备出色的绝缘性能,能够有效防止电子跃迁,保证设备在高压、高温等极端环境下的稳定工作。作为一种优秀的绝缘体,金刚石能够使器件在较低温度下以更高功率运行,实现了更高的热效率,成为理想的高效半导体材料。 图8:金刚石切片上演“徒手切冰块”(图中分别为铁、玻璃、金刚石的热传导) 图9:金刚石禁带宽度、电子和空穴迁移率综合表现突出(圆的面积与材料的热导率成比例) 图10:金刚石为半导体材料领域“六边形战士”,被视为“终极半导体” 相较于第三代半导体,单晶金刚石(SCD)和多晶金刚石(PCD)材料优势更为显著。金刚石衬底能够有效解决GaN功率器件面临的散热难题,从而在相同尺寸下,制造出具有更高功率密度的GaN基功率器件,显著提升器件的性能和稳定性。 与硅(Si)相比,金刚石芯片可以使转换器轻5倍,体积更小;与碳化硅(SiC)相比:成本可以便宜30%,所需的材料面积仅为SiC芯片的1/50,减少3倍的能量损耗,并将芯片体积缩小4倍,从而大幅降低能耗。在注重系统体积和重量时,通过提升开关频率,金刚石器件能够使无源元件的体积减少4倍,同时配合更小的散热器。 图11:金刚石热导率高达1000-2000W/m.K 图12:SCD、PCD作为衬底材料热导率优势明显 金刚石作为散热材料主要有三种方式:作为金刚石衬底、作为热沉片、以及通过在金刚石结构中引入微通道散热。随着芯片集成度的提高和封装空间的紧缩,金刚石基板凭借其卓越的导热性能、高硬度和强度,能够在有限空间内为芯片提供支撑和保护,同时通过其低热膨胀系数,确保高密度组装环境下芯片之间的连接稳定性不受温度波动影响。相比传统SiC衬底,金刚石基板将器件热阻降低至4.1 K·mm/W,在2W功率下可使芯片温度下降10℃,为芯片构建了高效稳定的散热基础。Akash Systems推出的GaN-on-diamond射频功率放大器,相较于GaN-on-Sic,采用GaN-on-diamond制程的晶体管温度降低了30多度。 图13:金刚石作为半导体衬底具有优异的散热性 图14:相较于GaN-on-Sic,采用GaN-on-Diamond制程的晶体管温度降低了30多度 2、钻石散热:高算力时代的“终极”方案,打开AI潜力的钥 匙 钻石基于独特电学和热导的优势,散热前景非常广阔。钻石散热方案有望在高效能电子产品、量子计算中发挥重要作用,未来每台电脑、汽车和手机都有望装上钻石。 2.1、AI、HPC:钻石芯片性能提升三倍,温度降低60% 钻石散热技术可让GPU计算能力提升三倍,温度降低60%。随着芯片性能的提升,功率增加导致的积热问题成为制约CPU、GPU性能的瓶颈,钻石冷却技术被视为有效的解决方案。钻石基板具有超高的热导性,可以大幅提升芯片散热效果。 根据D