AI智能总结
孙书桩1,郭亚飞2,赵传文2,邵斌3,4,胡军3,4,孙楠楠5,6,李嘉楠7,8,秦昌雷7,8,金波9,10,11,12,梁志武9,10,11,12,张肖宇13,14,刘文强13,14,张毅然15,曲雅琨16,17,孙洪满16,17,王耀祖18,19,20,余柏呈18,19,20,周会18,19,20,赵虓仝21,朱园21,吴春飞21 (1.郑州大学化工学院,河南郑州450000;2.南京师范大学能源与机械工程学院,江苏南京210023;3.华东理工大学化学与分子工程学院,上海 200237;4.华东理工大学先进材料重点实验室,上海200237;5.中国科学院上海高等研究院低碳催化与CO2利用全国重点实验室,上海201210;6.中国科学院上海高等研究院低碳转化科学与工程重点实验室,上海201210;7.重庆大学能源与动力工程学院,重庆400044;8.重庆大学低品位能源利用技术与系统教育部重点实验室,重庆400044;9.湖南大学化学化工学院,湖南长沙410082;10.湖南大学二氧化碳捕获与封存国际合作中心,湖南长沙410082;11.湖南大学化石能源低碳化高效利用湖南省重点实验室,湖南长沙410082;12.湖南大学先进催化教育部工程研究中心,湖南长沙410082;13.华中科技大学能源与动力工程学院,湖北武汉430074;14.华中科技大学煤燃烧与低碳利用全国重点实验室,湖北武汉430074;15.上海交通大学智慧能源创新学院,上海200240;16.中国石油大学(华东)化学化工学院,山东青岛266580;17.中国石油大学(华东)重质油国家重点实验室,山东青岛266580;18.清华大学能源与动力工程系,北京100084;19.清华大学热科学与动力工程教育部重点实验室,北京100084;20.清华大学二氧化碳利用与减排技术北京市重点实验室,北京100084; 21.贝尔法斯特女王大学化学与化学工程学院,英国贝尔法斯特BT7 1NN) .摘要:碳捕集与利用(CCU)技术在能源结构低碳化转型与碳净零排放中起着关键作用,但受制于冗长的工艺步骤和高企的能源资金投入难以推广实施。集成二氧化碳(CO2)捕集与利用(ICCU)为一体可通过原位催化转化的方式协同实现CO2升级和吸附剂再生,避免了传统CCU技术中高耗能的温压变换再生和气体压缩储运等中间步骤,显示出极具竞争力的工业应用前景。本文总结了ICCU领域国内外的最新研究进展,从与CO2捕集集成的反应出发,分析应用于ICCU过程的“捕集–催化”双功能材料的设计准则,探讨材料与碳捕集与催化转化性能的构效关系,解析原位催化转化的反应机理,以期为材料与过程的理性设计提供参考。结合非热催化转化技术,本文综述了前沿的研究进展,展望了其在ICCU领域的发展前景与方向。基于ICCU设计思路耦合其他高碳排过程,拓展了相关的应用场景,为相关过程创新提供了思路。本综述总结了ICCU系统及双功能材料体系的发展现状、前景与机遇,从材料到过程进行了综合的评论,为该领域未来的研究及工业化提供了重要参考。 关键词:二氧化碳捕集与利用一体化;双功能材料;逆水煤气变换;甲烷化;甲烷干重整;CO2捕集;CO2催化转化 中图分类号:X701文献标志码:A文章编号:1006−6772(2025)06−0053−55 Recent progress on integrated carbon dioxide capture andutilization technology SUN Shuzhuang1,GUO Yafei2,ZHAO Chuanwen2,SHAO Bin3,4,HU Jun3,4,SUN Nannan5,6,LI Jianan7,8,QIN Changlei7,8,JIN Bo9,10,11,12,LIANG Zhiwu9,10,11,12,ZHANG Xiaoyu13,14,LIU Wenqiang13,14,ZHANG Yiran15,QU Yakun16,17,SUN Hongman16,17,WANG Yaozu18,19,20,YU Bocheng18,19,20,ZHOU Hui18,19,20,ZHAO Xiaotong21,ZHU Yuan21,WU Chunfei21 .(1.School of Chemical Engineering,Zhengzhou University,Zhengzhou 450000,China;2.School of Energy and Mechanical Engineering,Nanjing NormalUniversity,Nanjing 210042,China;3.School of Chemistry and Molecular Engineering,East China University of Science and Technology,Shanghai200237,China;4.Key Laboratory for Advanced Materials,East China University of Science and Technology,Shanghai 200237,China;5.State KeyLaboratory of Low Carbon Catalysis and Carbon Dioxide Utilizations,Shanghai Advanced Research Institute of Chinese Academy of Sciences,Shanghai201210,China;6.Key Laboratory of Low-Carbon Conversion Science and Engineering,Shanghai Advanced Research Institute of Chinese Academy ofSciences,Shanghai 201210,China;7.School of Energy and Power Engineering,Chongqing University,Chongqing 400044,China;8.Key Laboratory ofLow-grade Energy Utilization Technologies and Systems of Ministry of Education,Chongqing University,Chongqing 400044,China;9.College ofChemistry and Chemical Engineering,Hunan University,Changsha 410082,China;10.Joint International Center for CO2Capture and Storage(iCCS),Hunan University,Changsha 410082,China;11.Provincial Hunan Key Laboratory for Cost-effective Utilization of Fossil Fuel Aimed at Reducing Carbon-dioxide Emissions,Hunan University,Changsha 410082,China;12.Advanced Catalytic Engineering Research Center of the Ministry of Education,HunanUniversity,Changsha 410082,China;13.School of Energy and Power Engineering,Huazhong University of Science and Technology,Wuhan 430074,China;14.State Key Laboratory of Coal Combustion,Huazhong University of Science and Technology,Wuhan 430074,China;15.College of SmartEnergy,Shanghai Jiao Tong University,Shanghai 200240,China;16.College of Chemistry and Chemical Engineering,China University of Petroleum(East China),Qingdao 266580,China;17.State Key Laboratory of Heavy Oil Processing,China University of Petroleum(East China),Qingdao266580,China;18.Department of Energy and Power Engineering,Tsinghua University,Beijing 100084,China;19.Key Laboratory for Thermal Scienceand Power Engineering of Ministry of Education,Tsinghua University,Beijing 100084,China;20.Beijing Key Laboratory of CO2Utilization and ReductionTechnology,Tsinghua University,Beijing 100084,China;21.School of Chemistry and Chemical Engineering,Queen’s UniversityBelfast,Belfast BT71NN,UK) Abstract:Carbon capture and utilization(CCU)technologies play key roles in controlling carbon emission and net zero,but thedeployment of which are restricted by the complex intermediate steps and high energy and capital investment. Integrated carbon dioxidecapture and utilization(ICCU)can synergistically achieve CO2upgrading and adsorbent regeneration through in-situ catalyticconversion,avoiding the energy-consuming intermediate steps such as temperature-pressure swing and CO2compression,storage andtransportation in conventional CCU technologies,exhibiting a highly competitive industrial application prospect. This review summarizesthe updated research progress in the field of ICCU. Classified by the reaction integrated with CO2capture,the design principle of “capture-catalysis”dual-functional materials(DFMs)are concluded,the structure-activity re