您的浏览器禁用了JavaScript(一种计算机语言,用以实现您与网页的交互),请解除该禁用,或者联系我们。[未知机构]:中金:卫星互联网十问十答–20230912 - 发现报告

中金:卫星互联网十问十答–20230912

2023-09-12未知机构J***
中金:卫星互联网十问十答–20230912

全球卫星互联网建设发展迅速,国内卫星互联网系统建设、关键技术、下游应用均取得明显进展。本篇报告,我们尝试回答市场关于卫星互联网发展战略、技术趋势、经济性等方面疑问。 摘要 低轨系统明显提升卫星通信性能,频轨资源争夺催化组网计划不断加码。1)低轨卫星通信系统服务质量远优于传统高轨系统,能够满足手机通话等对时延、带宽要求较高的大众应用场景,相比于高轨系统商业化价值更高。2)高价值的频率轨道资源较为稀缺,在 ITU“先登先占”原则的驱动下,各国正积极抢占优势轨位及频率资源,波音、空客、亚马逊等企业均申报了大量的频轨资料,2023年以来中国新增发射数量超过 5.1 万颗。 国内商业航天尚存较大降本空间,Starlink 已验证卫星互联网的商业模式。1)当前我国卫星的平均制造成本超过亿元,LEO 轨道发射成本约 2 万美元/千克,Starlink 的卫星制造和单位发射成本分别为 50 万美元及 3000 美元/千克,我国卫星互联网星座部署成本优化空间较大。2)Starlink 是全球规模最大的互联网 星座,当前用户数量已超150万人,SpaceX负责人预计Starlink2023年有望实现盈利,验证低轨卫星互联网商业模式的可行性。 下一代通信将迈向星地融合时代,手机直连有望成为卫星互联网的主要商业形态之一。1)IMT-2030(6G)提出“星地一体融合组网”是6G十大关键技术之一,全球、全天时、全天候的星地融合通信有望是下一代通信网络的主要形态。2)据爱立信的报告,2022年全球未接入互联网的人口数量接近20亿,NR-NTN技术验证奠定手机直连卫星的技术基础,美国ASTSpaceMobile、SpaceX等企业均在积极布局手机直连技术,我们认为手机直连有望成为卫星互联网的主要商业形态之一,也将是卫星互联网的下一个竞争焦点。 风险 巨型星座建设不及预期;下游市场拓展不及预期。 正文 问题一:高轨卫星通信系统已经商用,为什么要建设低轨系统? 高轨卫星通信系统已开始面向大众市场提供商用服务。1965年4月,Intelsat基于第一代通信卫星Intelsat-1提供国际通信服务,标志着卫星通信正式进入商用阶段,此后高轨卫星通信系统大量应用于广播电视转播、卫星电话、应急通信等领域。2023年8月,华为发布支持卫星通话的Mate60Pro手机[1],Mate60Pro基于天通一号系列卫星实现卫星通话功能,工作于S频段,下行频率为2170MHz~2200MHz,话音速率1.2/2.4/4.0kbps,能够实现的话音速率较低。智能手机等通用终端上应用的落地,标志着高轨卫星通信正式打开大众服务市场。高轨通信卫星覆盖面积广,系统通信容量和服务质量限制其在大众市场的发展。高轨通信卫星通常指工作于地球同步轨道上的卫星,其轨道高度约为36000公 里。高轨通信卫星轨道高度高、单星覆盖面积大,三颗地球静止轨道(GEO轨道)卫星就可实现对全球南北极外所有区域的覆盖。由于高轨卫星通信系统卫星数量少,系统所能提供的通信容量和服务质量有限。以Viasat为例,其系统理论 容 量 约1000Gbit/s, 通 信 时 延 超 过500ms, 远 低 于Starlink早期101775Gbit/s的系统容量和30ms的通信时延,难以满足手机通话等对时延、带宽要求较高的大众应用场景。 资料来源:《高低轨宽带卫星通信系统特点对比分析》(孙晨华等,2020),中金公司研究部 低轨卫星系统具有时延短、容量大等优点,相比于高轨系统商业化价值更高。低轨卫星通信系统的空间段通常由大量卫星构成,且卫星的轨道高度通常在1000公里以下,相比于高轨系统通信时延更短、系统通信容量更高,能够面向大量用户同时提供宽带网络接入服务。相比于典型的高轨卫星系统,Starlink的下载速度由50Mbps提升至150Mbps,时延由500ms以上缩减至30ms以下,整体通信性能已经基本达到4G蜂窝网络的水平。相比高轨卫星通信系统,以Starlink为代表的低轨系统,能够为用户提供更高质量的通信服务。 图表2:卫星互联网与传统互联网通信性能及套餐价格对比 资 料 来 源 :BCG,Modelling the Satellite Internet Market usingAgent-BasedComputationalEconomics(JamesP.Dingley,2023),AT&T,中金公司研究部 问题二:为什么频轨资源是卫星互联网争夺的焦点? LEO轨道资源相对充裕,高价值的轨位仍是稀缺资源。为了规避频率干扰及卫星碰撞风险,卫星之间需要保持一定的安全距离,因此同一高度的轨道存在卫星容量上限。根据MIT的研究,在考虑星间碰撞风险的前提下,高度200~900km的LEO轨道空间在200年内能够容纳总计180万颗活动卫星[2]。中国科学院软件研究所的研究结果表明,在同层与跨层星间最小安全距离均为50km情况下,高度300~2000km的轨道空间内可容纳17.5万颗卫星[3]。尽管LEO轨道卫星容量较大,但300~600km左右的轨道高度在卫星寿命、通信时延、频率干扰等方面具有一定优势,是卫星互联网星座运营方重点争夺的位置。 传统卫星频段日益拥挤,Ka频段成为低轨卫星通信核心通道。卫星频段由ITU划分后分配给各国,各国在境内自主分配频段。1.5GHz和2GHz的L、S频段有卫星移动通信系统“黄金频段”之称,但由于频段稀缺性及大量频率资源已被卫星气象、射电天文、地面移动业务占用,国内申报和海外协调的难度很大,目前卫星通信业务几乎无法使用L/S频段实现全球覆盖。NGSO宽带互联网星座大都选择Ku、Ka频段,但由于:1)Ku、Ka频段在轨GEO卫星网络资料数量大;2)同一区域的多个NGSO频谱排他性严重,如OneWeb声称拥有Ku频 段独家频谱拥有权,Ku/Ka频段的频率协调难度越来越大。我们认为,Ka频段或将是未来低轨通信业务使用的主要频段,在当前频率协调难度持续提升的情况下,未来Ka频段资源将是低轨星座的核心战略资源之一。 问题三:怎么理解申报的星座规模和实际发射数量间的关系? 国际上频轨资源获取采用“先登先占”原则,批量申报优势资源成为抢占频轨资源的通用策略。国际电信联盟(ITU,InternationalTelecommunicationUnion)负责全球频轨资源的协调和分配,国际上卫星频轨资源遵循“先登先占”原则,经ITU公示后频轨资源在有效期内划归申报方,其他机构不得再次申报占用。SpaceX于2015年首次提出“Starlink计划”,2016年向ITU申请共1.2万颗卫星发射计划,并于2019年10月将星座总规模扩大至4.2万颗,此后卫星频轨资源竞争日益激烈。全球主要国家均采取批量申报的方式锁定优势轨位及频率资源,波音、空客、亚马逊、Google、Facebook等企业均在ITU申报了大量的卫星频轨资源。 图表4:海外小卫星星座建设计划 注:数据时点为2022年5月资料来源:NSR(美国卫星与航天市场研究与咨询公司NorthernSkyResearch),各公司官网,中金公司研究部 卫星网络资料申报后需遵守ITU“里程碑”要求,否则网络资料将面临相应规模的缩减。根据工信部资料,在2019年埃及召开的WRC会议上,ITU修订了非地球同步轨道(NGSO)卫星星座的发射里程碑要求,规定在卫星频率和轨道申请后的七年内必须发射第一颗卫星,九年内必须发射总数的10%,12年内必须发射总数的50%,14年内必须全部发射完成[4],否则需对其申报的网络资料进行相应规模的缩减。根据ITU里程碑要求,SpaceX需要在2025/2028/2030年前分别完成Starlink一期及二期计划中1193/5963/11926颗卫星的发射,需要在2028/2031/2033年前完成Starlink三期计划中3000/15000/30000颗卫星的发射。 图表5:“Starlink计划”部署阶段 问题四:如何降低卫星互联网的星座部署成本? 卫星工程大系统通常包括五大组成部分,卫星制造和火箭发射是主要成本项。卫星工程大系统包括卫星系统、运载火箭系统、发射场系统、测控系统和地面应用系统,其中卫星系统和运载火箭系统是成本占比最高的两大系统。据SpaceX披露的数据,猎鹰9号运载火箭发射成本由火箭成本、发射成本、保险成本和测控成本构成,其中火箭成本占比达到70%。据美国卫星工业协会(SIA)发布的数据,2022年全球卫星制造业收入约158亿美元,发射服务业收入约70亿美元,卫星行业市场规模约为发射服务环节的2.25倍。目前国内卫星制造成本和火箭发射成本与海外存在明显差距,未来具有较大优化空间 图表6:猎鹰9号火箭发射成本的构成 资料来源:SpaceX官网,中金公司研究部 卫星平台和有效载荷约各占整星成本50%。卫星平台包括结构与热控、姿态与轨道控制、电源与供配电、测控和数据管理等分系统,是实现卫星基本功能的主要组成,其中:1)卫星结构和热控分系统成本约占整星的5%-10%。2)姿态与轨道控制分系统起到卫星姿态、轨位控制功能,包括星敏感器、太阳敏感器、 磁力矩器、动量轮、推进器等部件,约占整星成本30%-40%。3)测控与数据传输、数据管理系统约占整星成本10%-15%左右。有效载荷是实现卫星设计功能的仪器和设备,根据卫星任务不同分为通信、导航、遥感或科学研究载荷,通常有效载荷约占整星成本50%左右。 资料来源:《卫星成本预测方法的比较分析》(卢波等,2005),中金公司研究部 我国卫星制造成本高于海外的商业卫星,规模化生产是降低卫星制造成本的核心途径。根据长江日报[5]报道,我国每颗卫星的平均生产成本超过亿元,而Starlink和亚马逊单颗卫星的制造成本仅为50万和100万美元,我国卫星制造成本相对较高。采用新设计理念、新技术、新工艺,引入商用货架产品替换宇航级元器件,能够有效降低卫星制造成本。此外,面对卫星互联网大规模卫星组网发射需求,规模化生产是降低卫星制造成本的核心途径。以Oneweb卫星工厂为例,OneWeb卫星工厂引入自动化生产线和协作机器人、智能工具等先进技术,单条生产线每天可以生产2颗卫星。我国航天科技五院、航天科工空间工程总体部、 中科院微小卫星创新研究院、格思航天、银河航天等均已建成智能化生产产线,我们认为智能化产线的投产有助于提高卫星批产效率、降低卫星研制成本。 资料来源:Airbus官网,中金公司研究部 相比美国等成熟商业发射市场,国内火箭发射成本仍有优化空间。根据SpaceX公司公布的数据,猎鹰9号发射任务成本由火箭成本、发射成本、测控成本以及 保险费用构成,其中火箭占总成本70%,测控成本约占总成本13%。测控成本、发射成本和保险费用主要取决于任务规模、发射成功率等因素,运载火箭是发射成本中最主要的可控项。SpaceX公司的猎鹰9号火箭LEO轨道发射服务公开报价约3000美元/千克,低于世界上其他同等运载能力的一次性运载火箭。据央广网报道[6],国内快舟1号运载火箭,LEO轨道发射服务价格约为2万美元/千克,发射成本仍有较大优化空间。 商业火箭有助于降低卫星发射成本,可重复使用火箭有望在2025年后投入使用。面对卫星互联网大规模组网发射需求,国内火箭仍存在一定的有效运力不足、发射成本较高的问题。近年来,国内商业发射领域蓬勃发展,涌现出了一批如科工火箭、中国火箭、蓝箭航天、星河动力、星际荣耀、天兵科技等代表性商业火箭企业。国内商业火箭公司已初步具备商业载荷入轨发射能力,并正积极探索实现低成本商业发射的可行路径,我们认为商业火箭的发展有助于降低卫星发射成本。此外,据《我国空间互联网星座系统发展战略研究》(李峰等,2021),我国新型重复使用运载火箭可逐步承担2025年后更大规模的组网发射任务,可重复火箭的应用有望进一步降低卫星互联网星座的部署成本。 问题五:国内是否具备大规模卫星组网发射的能力? 巨型星座是卫星互联网空间段